Search results for "Limit cycles"

showing 9 items of 9 documents

Darboux integrable system with a triple point and pseudo-abelian integrals

2016

We study pseudo-abelian integrals associated with polynomial perturbations of Dar-boux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.

0209 industrial biotechnologyPure mathematicsControl and OptimizationIntegrable systemTriple pointAbelian integrals[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Darboux integrability[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)02 engineering and technologyType (model theory)01 natural sciencesIntegrating factor020901 industrial engineering & automationFOS: MathematicsLimit Cycle0101 mathematicsAbelian groupMathematics - Dynamical Systems34C07 34C08MathematicsNumerical AnalysisAlgebra and Number Theory010102 general mathematicsMathematical analysisLimit cyclesMathematics Subject ClassificationControl and Systems EngineeringBounded functionFoliation (geology)
researchProduct

Multiplicity of fixed points and growth of ε-neighborhoods of orbits

2012

We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…

Critical Minkowski orderDynamical Systems (math.DS)Fixed pointsymbols.namesakeMinkowski spaceFOS: MathematicsCyclicityDifferentiable functionHomoclinic orbitlimit cycles; multiplicity; cyclicity; Chebyshev scale; Critical Minkowski order; box dimension; homoclinic loopMathematics - Dynamical SystemsAbelian groupPoincaré mapMathematicsBox dimensionApplied MathematicsMathematical analysisMultiplicity (mathematics)Limit cyclesMultiplicityPoincaré conjecturesymbols37G15 34C05 28A75 34C10Homoclinic loopAnalysisChebyshev scaleJournal of Differential Equations
researchProduct

Cycles in continuous and discrete dynamical systems : computations, computer-assisted proofs, and computer experiments

2009

The present work is devoted to calculation of periodic solutions and bifurcation research in quadratic systems, Lienard system, and non-unimodal one-dimensional discrete maps using modern computational capabilities and symbolic computing packages.In the first chapter the problem of Academician A.N. Kolmogorov on localization and modeling of cycles of quadratic systems is considered. For the investigation of small limit cycles (so-called local 16th Hilbert’s problem) the method of calculation of Lyapunov quantities (or Poincaré-Lyapunov constants) is used. To calculate symbolic expressions for the Lyapunov quantities the Lyapunov method to the case of non-analytical systems was generalized. …

Lyapunov quantitiesmallintaminenLienard systemPLLlimit cyclessymbolinen laskentabifurcationdynaamiset järjestelmätKolmogorov's problemdynamical systemsmatemaattiset mallitphase locked loopstietojenkäsittely
researchProduct

Principal part of multi-parameter displacement functions

2012

This paper deals with a perturbation problem from a period annulus, for an analytic Hamiltonian system [J.-P. Françoise, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 87–96 ; L. Gavrilov, Ann. Fac. Sci. Toulouse Math. (6) 14(2005), no. 4, 663–682. The authors consider the planar polynomial multi-parameter deformations and determine the coefficients in the expansion of the displacement function generated on a transversal section to the period annulus. Their first result gives a generalization to the Françoise algorithm for a one-parameter family, following [J.-P. Françoise and M. Pelletier, J. Dyn. Control Syst. 12 (2006), no. 3, 357–369. The second result expresses the principal terms in …

MonomialMathematics(all)Abelian integralsGeneral MathematicsHamiltonian system; perturbation; triangle centerMathematical analysisIterated integralsStandard basisMelnikov functionsDisplacement functionLimit cyclessymbols.namesakePlanarIterated integralsBautin idealBounded functionsymbolsPrincipal partVector fieldHamiltonian (quantum mechanics)Multi parameterMathematicsBulletin des Sciences Mathématiques
researchProduct

Nilpotence of orbits under monodromy and the length of Melnikov functions

2021

Abstract Let F ∈ ℂ [ x , y ] be a polynomial, γ ( z ) ∈ π 1 ( F − 1 ( z ) ) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation d F + e ω = 0 of the integrable foliation given by F . We study different invariants: the orbit depth k , the nilpotence class n , the derivative length d associated with the couple ( F , γ ) . These invariants bind the length l of the first nonzero Melnikov function of the deformation d F + e ω along γ . We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this b…

PhysicsPure mathematicsSequencePolynomialConjectureMelnikov functionAbelian integrals010102 general mathematicsStatistical and Nonlinear PhysicsIterated integralsCondensed Matter Physics01 natural sciencesNilpotence classFoliationDisplacement functionLimit cyclesMonodromySimple (abstract algebra)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Product (mathematics)0103 physical sciences010307 mathematical physics0101 mathematicsOrbit (control theory)ComputingMilieux_MISCELLANEOUS
researchProduct

Darboux systems with a cusp point and pseudo-abelian integrals

2018

International audience; We study pseudo-abelian integrals associated with polynomial deformations of Darboux systems having a cuspidal singularity. Under some genericity hypothesis we provide locally uniform boundedness of on the number of their zeros.

[ MATH ] Mathematics [math]Cusp (singularity)Pure mathematicsPolynomialApplied Mathematics[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Darboux integrability[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Pseudo-abelian integrals[MATH] Mathematics [math]01 natural sciences010101 applied mathematicsLimit cyclesSingularityUniform boundednessPoint (geometry)First integral0101 mathematicsAbelian groupMSC : 34C07 ; 34C08[MATH]Mathematics [math]AnalysisMathematics
researchProduct

Lyapunov quantities and limit cycles in two-dimensional dynamical systems : analytical methods, symbolic computation and visualization

2011

mallintaminenLienard systemhidden oscillationslimit cyclesLyapunov exponentsdynamical systemssymbolic computationLyapunov quantitiesPoincare-Lyapunov constantscomputer visualizationtwo-dimensional dynamical systemsKolmogorov's problemmatemaattiset mallittietojenkäsittely
researchProduct

Iterative Learning Applied to Hydraulic Pressure Control

2018

This paper addresses a performance limiting phenomenon that may occur in the pressure control of hydraulic actuators subjected to external velocity disturbances. It is demonstrated that under certain conditions a severe peaking of the control error may be observed that significantly degrades the performance of the system due to the presence of nonlinearities. The phenomenon is investigated numerically and experimentally using a system that requires pressure control of two hydraulic cylinders. It is demonstrated that the common solution of feed forwarding the velocity disturbance is not effective in reducing the peaking that occurs as a result of this phenomenon. To improve the system perfor…

peaking phenomenon0209 industrial biotechnologylimit cyclesComputer scienceControl (management)Iterative learning controliterative learning controlHydraulic pressure control02 engineering and technologyHydraulic pressurelcsh:QA75.5-76.95Computer Science Applications020901 industrial engineering & automationControl and Systems EngineeringControl theoryModeling and Simulation0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceSoftwareModeling, Identification and Control: A Norwegian Research Bulletin
researchProduct

Mathematical models and stability analysis of three-phase synchronous machines

2013

tahtikoneetthe limit load problemlimit cycles of the second kindkuormitussähkökoneetstabilitytransient processessähkögeneraattoritcircular solutionssynchronous machinesvakavuusroottoritmatemaattiset mallitthe non-local reduction methodsähkömoottoritdynamiikkafour-pole rotor
researchProduct